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On Functions Whose Stationary Points Are Global Minima

by
Israel Zangl, Eng Ung Choo2 and Mordecai Avr1e13

April 1975 (Revised July 1976)
Abstract

In this paper a characterization of functions whose stationary
points are global minima is studied. By considering the level ;ets of
a real function as a point-to-set mapping, and by examining its semi-
continuity properties, we obtain a result that a real function, defined
on a subset of R" and satisfying some mild regularity conditions, be-
longs to the above family if and only if the point-to-set mapping of its
level sets is strictly lower semicontinuous. Mathematical programming

applications are also mentioned.

1Technion, Israel Institute of Technology, Haifa, Israel and Center for
Operations Research and Econometrics, Heverlee, Belgium. Now at the

Faculty of Management, Tel Aviv University, Tel Aviv, Israel.
2The University of British Columbia, Vancouver, B.C., Canada.

3Technion, Israel Institute of Technology, Haifa, Israel.

Keywords: Stationary point; Global minimum; Point-to-set mapping;
Optimality conditions.
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1.  Introduction

Point-to-set mappings and their semicontinuity properties have
recently been the subject of a number of studies in the mathematical
programming literature, see for example Hogan []], Robinson and Meyer [2]
and Zangwill [3]. 1In Zang and Avriel[4], and Zang, Choo and Avriel [3]
it was shown that a necessary and sufficient condition for a real functionm,
defined on a subset of Rn, to be in the family of functions whose local
minima are global, is that its level sets, considered as a point-to-set

mapping, is lower semicontinuous.

In this work we direct our attention to deriving a similar con-
dition for a function to belong to the family of functions whose statiomary
points are global minima. This condition will use some stronger semi-

continuity properties of level sets.

Let f be a real function on a subset C of R" and let o be a real

number. Consider the level sets of f
) Lf(a) ={x:x€C,f(x) <al
and the effective domain of Lf(a), {.e. the set
2) G = {a : o« €ER, Lf(a) 01

Note that for any real function the sat Gf is an interval.
Clearly, Lf(a) is a point-to-set mapping of points in Gf into subsets of R".
Recalling the definition of lower semicontinuity of point-to-set mappings

we have (see Meyer [6])

Definition 1. The point-to-set mapping Lf(a) is said to be lower

semicontinuous (lsc) at a point a € G, if x € L (a), taly c @

f’

f
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{ai} > o imply the existence of a natural number K and a sequence {xi}

such that

3) xi € Lf(ai), i = K, K+1,... and {xi} +> X.

1f Lf(u) is 1lsc at every o € Gf it is said to be lsc on Gf.

Lower semicontinuity of the level set mapping Lf(a) can be used
to characterize functions whose local minima are global{4,5). Level set
mappings are monotone in a certain sense: For any two a € Gf, a € Gf
such that a < o we have Lf(a)C Lf(q). For such mappings the property

to be defined next is stronger than lower semicontinuity.

Definition 2. The point~to-set mapping Lf(a) is said to be strictly

lower semicontinuous (slsc) at a point a € G_ if x € Lf(u), {ui} ce

£

{ai} + o imply the existence of a natural number K, a sequence {xi}

f’

and a real number 8(x)> O such that

(4) xi € Lg [ui- B(x)llxi - x§),i = K,K+1,... and {xi} *x

If Lf(a) 1s slsc at every a € Ge 1t is said to be slsc on Gf.

Clearly, if Lf(u) is slsc then it is also 1lsc. Let Bs(x) c j"®

denote an open ball with radius § centered around x.

Definition 3. A point X €C is a local minimum of f if there exists

a 6 > 0 such that

(5)  £(x) > £(x)

for every x €C N BG(;) and it is a global minimum of f on C 1f (5)

holds for every x € C.




A necessary condition for a local minimum of a real function
defined on an open subset of R" and differentiable at a point x
is V(%)= 0, where Vf is the gradient of f. A point where the gradient
of f vanishes is also called a stationary or critical point of f. Since
we shall consider differentiable functions (in a certain sense) which may
be defined on a nonopen set it is necessary to extend the classical

definition of a stationary point.

We first recall the definition of tangent directions as defined

by Hestenes [7].

Definition 4. Let C be a nonempty subset of R" and let L € c.

A vector Y € Rn is called a tangent direction to C at the point xo

if there exists a sequence {xk} C C satisfying xk ¢ xo, {xk} + x0 and

kK 0
X =X =
0y v

(6) lim

koo | xk-x

The sequence {xk} is said to define the direction y.

If x0 is an isolated point (x0 is isolated if {xo} and C/{xo}

are disconnected), then there exists no sequence in C converging to x?

and satisfying xk d xo. In this case y = 0 is said to be the only tangent

direction to C at xO. The collection of all tangent directions to C

at xo will be denoted Y(C,xo).

We may note here that the "cone of tangents" to a set C at xq, used
in constraint qualification analysis of mathematical programming is the cone
consisting of nonnegative multiples of vectors y € Y(C,xo), see for
example Gould and Tolle {8)}, or Avriel [9]). Let us define now the concept

of y-derivatives.




Definition 5. Let f be a real function on C C Rn, x € C and y € Y(C,x).

If there exists a real number Gf(i,y) such that

N lim  £(x%) - £(X)
ko k

= §f(X,y)

hx - x

for every sequence {xk } € C which defines y, then 8f(x,y) is called the

y-derivative of f at .

If C is an open set and x € C, then Y(C,x) = R". Suppose f is
differentiable at x. Then §f(x,y) = yT Vf(x) is the y-derivative of f

at x for every direction y € R".

We now define a stationary point as we shall refer to it in the

sequel.

Definition 6. Let f be a real function on C C R" and suppose that

f has a y-derivative at x € C for every y € Y(C,x). The point x is said

to be a stationary point of f if 5f(x,y) 20 for every y € Y(C,x).

It was shown by Hestenes [7] that, if X is a local minimum of a real

function,differentiable at i, then it is also a stationary point, but not
conversely. The concept of stationary pointsdefined here extends the class-
ical definition so that it includes more points which may be possible cand-
idates for a local minimum. Clearly, if x lies in the interior of the
domain of f, the concept defined here and the classical one,Vf(E)- 0, are

identical.

2. Stationary Points and Global Minima

Suppose that f 1s a real function on C C R" . For every real
number B >0 and x € C , let fB z be the function defined by
’

fB,i(x) = f(x) + Blx - X] for xE€C .

5




The following theorem gives two equivalent conditions for the point-to-set

mapping L.(a) to be slsc at a point a € G; -

Theorem 1. Let f be a real function on C CR" and let o € G, . The

following statements are equivalent:

(a) Lf(a) is slsc at @ ;

(b) For every x € Lf(E) such that f(x) = & , either f has aglobal minimum

at x or there exists a pogsitive real number B such that fB % does
L]

not have a local minimum at X ;

(c) For every x € Lf(a) such that f(x) = 8 , either f hasaglobal minimum

t Xx or there exist a sequence {yi} CC and a positive real number

B(x) such that yi # x for all i and

(8) vt e Le(a - Byl -z 1=1,2,... and vl »x.

Proof. (a) = (b) . Suppose that f(xo) < £f(xX) = o for some <L € c.

Then there exists a sequence {al}) € 6. such that {al} & and

f
i+l

f(xo)-g ai < < @& for all {1 . By Definition 2, there exist a natural

number K , a sequence {xi} CC and a real number B > 0 such that

(9) e Lf[ai -ghx! - gl] 1 =K,K#l,... and {x} +%.

Then,

i

) £, .x.(xi) =t +Bxt - xp <ol <& L=RKH,... and (M} o .

Thus x 1s not a local minimum of f, - .

B,x

P -




(b) = (c) . Suppose that f(xo) < f(X) = a for some x0 € C . Then

there exists a positive real number £ such that X is not a local

minimum of fB 3 Thus there exists a sequence {yi} C C such
that f8 i(yi) < fB i(i) =qa and {yi} - x . Obviously, yi # x for
all i, and
hy < 3-8yl - - 1y >3
(11) f(y) < 3 -~ Bhy" = x i=1,2,... and {y'}-=>x.

It is easy to see that (11) implies (8) with B(X) = 8 .

(¢) *(a) . Let x € Lf(&) N ) c Gy and {ai} - . If

f(x) < & the definition of strict lower semicontinuity can be easily

satisfied at X . So we need to consider only the case when f(X) =& .

i

If f has a global minimum at % , then o > a for all i . In this

case we let xi =% for all 1 and B be any positive real number,
If X 1is not a global minimum of f , then there exist a sequence

{yi} C C and a positive real number B(X) such that yi # x for all

{ and (8) holds. Let t' = tnflal,a®*l ...} for all 1. Then ¢! < ¢!*?,

el ﬁ»ai for all i and {ti}‘* o . For each 1 , it follows from (8),

yi # X and {ti}'* 0 that there exists an integer N, such that

(12) toh <ol - Bl -7 g - NN,
< .
The integers N1 can be chosen 80 that {1 < Ni Ni+1 for all 1
Now, for each 1 > Nl there exists 1i* = 1*(i) such that Ni*+1 <i 5.N1*+1 .
*
Let x! = yi @) for all 1> N.. Then {x!}CcC and {x}-%.

1

From (12), we have for each {1 > N

1

R e




L ]

1y by - i(yl ) < - iﬁ(i)ly' - xH oo NGkt b2,
In particular, (13) Is satisfied for § = {, becaune | Nj* + 1 . Therefore,
(14) f(xi) < Ll ;—E(i)ﬂx1 - % L= N +L,N 42,00

By the definition of t1 and letting B(x) = %ﬁ(;) we have

(15) fl) <ol - B@Ixt - % 1 = N_4+1,N

1 +2,...

1

Consequently, Lf(a) is slsc at & . ]

Theorem 2. Let f be a real function on C CR" and let X € C such

that f(x) = a . Suppose f has a y-derivative for every y € Y(C,X) .

Then x 1is e stationary point of f if and only if X is a local

minimum point of f for every real number 8 > 0 .

B, X

Proof. Suppose X 18 not a local minimum of fB % for some real

number B > 0 . Then there exists a sequence {x'} C ¢ such that

f -(xi) <f, (x) =a for all i and (x} > % . we may assume that
B,x B’R

(16) y = lim
1 +olx* - %l

exists. It follows from fB i(xi) <a= f(x) for all i that

.

e e = . . - -

P
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n for all i .
Ix" - X{

17

Thus 6f(X,y) < 0 and X is not a stationary point of f .

. i
Suppose that {x'} € C and {xi}'* %, y= lim X=X
- oof| i_-“
_ 1 _ i- X X
and 6f(x,y) <0 . Let B =-v§6f(x,y) . Then R > 0 and there exists

a natural number N such that

i -
(18) ﬁx_iL:i(zl < -8 1= N,N+L,...
Ix" - x§
Thus
i i - - o iy 4 <
(19) £(x) + Blx™ - xl < £(x) i=N,M1l,... and {x} %
Hence x 1is not a local minimumof f, - . O

B,x

As an immediate result from Theorem 1 and 2 we get

Corollary 1. Let f be a real function on C C R® . Suppose that for

every x€C, f has a y-derivative at x for each y € Y(C,x). Then

every stationary point of f 1is a global minimum of f on C if and only

if Lf(a) is slsc on Gf .

The following corollary is a special case of Corollary 1.

Corollary 2. Let f be a real differentiable function on an open set

containing C C R® ., Every stationary point of f is a global minimum

of f on C if and only if Lf(a) iz slsc on Gf .
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Let us illustrate now our results by some examples.

Example 1. If x is a stationary point which is not a global minimum,
then Lf(a) is not slsc at o = f(X) . In order to show it, consider

the function

_ 3
(20) f(x) = (x)7 .
defined on the interval C = [-1,1] . This function has a stationary
point at x = 0 , which is not a global minimum. Take any sequence
(o} 3 =0 satisfying

(21) -1 <a <0 i=1, 2,

and suppose that Lf(a) is slsc at @ = 0 . Then there exist a B(0) > 0

and a sequence {x} =0 satisfying

(22) fxhy = hH3 <ot o) k-0 1=1,2,...
From (21) and (22) we get that {x'} must satisfy

(23) x1 <0 1=1,2,...

and from (21), (22) and (23) we get

3

(24) o3 <of + Bo)xt < Bt 1 =1,2,... .

10
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Dividing by X we have

(25) (xi)z > B >0 i

But {x'} =0 , contradicting (25) . It follows

not slsc at a = 0 .

1,2,...

then that Lf(a) is

Example 2. Let f be the function defined on [-2i[,1] as follows:

2x + 511

T if =20 < x <
(26) f(x) = sin(x-vg)+ 2 if -Nl < x <
e2x if 0<xcX«

1.

This function is illustrated in the following figure

f{x)

[ R |

v

Figure 1
11
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The points -2]l and O are the only stationary points of f on [-2[I,1] and
we see that they are also global minima of f on ([-2II,1] . The function
f has a (+l)-derivative=-% at x = -2l and a (-1)-derivative= -2e2 at
x =1 . It has both (+1) and (~1) derivatives at each x € (-20,1) .
Hence at every x €[-2M,1] , f has a y-derivative for each y € Y([-21,1],x)
It follows from Corollary 1 that Lf is slsc on Gf = [1,< . Note that
even though f has local maxima at -I and 1 , they are not stationary
points of f . I

Let us look now at the family of pseudoconvex functions, defined
by Mangasarian [10]: A real differentiable function f on an open set
containing the convex set C € Rn is sald to be pseudoconvex on c,

if *€c, % €C and

(27) £(x) < £(®)
implies
(28) x-0Te® <o .

It is well known that for these functions every point X satisfying
V£(X) = 0 4is a global minimum. The proof of the following theorem is

omitted.

Theorem 3. Let f be a real differentiable function on an open set con-

taining a convex set C C R" . f f 1is pseudoconvex on C , then

Lf(d) is slsc on Gf .

The converse result, of course, does not hold since there are
functions whose stationary points are global minima but they are not

pseudoconvex.

12
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3. An Application to Mathematical Programming

Let us present now some sufficient conditions for a global minimum

in a general mathematical program given by
(29 () win f(x)
subject to

(30) g, 20 1=1,...,0

(3D hj(x) =0 i=1,...,p .

We state the next theorem without proof.

1

Theorem 4. Let f,gl...,gm , h ...,hp be real functions on the set

(32) X = {x:x €&", g, (0 20, i=1,...,m, h,(x) = 0, 3=1,...,p} .

Suppose that every stationary point of f in X 1is a global minimum of

f on X . If there exist x* €R", A" €r", * €RP satisfying

m P
(33) SE(x*,y) - ) Az5gi(x*,y) - u;Ghj(x*,y) 20
i=1 j=1

for every y € Y(X,x*) and
(34) X;gi(x*) =0 1=1,...,m

13
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(35) g, (x*) >0 i=1,...,m
(36) hj(x*) = 0 I=1,...,p
(37) >0,

then x* 1s a global optimum of problem (P).

Note that these sufficient conditions do not assume convexity or
its conventional generalizations (e.g. quasiconvexity, pseudoconvexity)
of the functions involved. If f , - SERRRRY -4 hl""’hp are differentiable

on an open set containing X then (33) becomes

P
* * *
121 A{Vg, () - jzl by, (x )) >0,

*

(38) yT (Vf(x*) -

4. Some Properties of Functions Having Slsc Level Sets.

We shall consider from now on functions defined on subsets of

n

R in the extended sense, i.e. f 1is a real function on C C R" means

that f(x) = +~ if x &C ,
Let fl and f2 be real functions on the subsets C1 and 02

of R" respectively. The infimal convolution of these two functions

is defined as

1 2 1 2 1 2
- | - . -
(39)  g(x) = (£; ® £,)(x) 1nf{f1(x ) + £,(x): x” €C.,x" €C,0x" + x = x}
= 1 2, 1 2
and it 18 a real function on the set C = C1 + C2 = {x" + x“: x* € Cl,x € CZ} .
14
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Let f be a real function on C C R" . Then the nonnegative

right scalar multiplication is defined as

‘Af(x/A) for A >0
(40) h(x) = fA(x) = 0 for A =0, x =20

l + o otherwise .

These two operations are defined in Rockafellar [11]. It is noted there
that the infimal convolution corresponds to summation of the epigraphs
of the functions fl and fz . 1f it is possible to replace the in-

fimum in (39) by minimum, we have
(41) epi(g) = epi(f,) + epi(fz)

It is also noted in {11] that nonnegative right scalar multiplication
corresponds to nonnegative scalar multiplication of the epigraph of

f and
(42) epi(h) = X epi(f) for A >0 .

The family of convex functions 18 closed under these two operations. Let

us show now that the family of real functions, defined on compact sets

and having slsc level sets, is also closed under these two operations (a real
function f on C CR™ 1is said to be closed if its epigraph is closed

relative to G % R).

be real closed functions on the compact subsets

Theorem 5. Let f1 and fz

C; and Cp of R" » having slsc levels sets on G, and Gf regpectively.
1 2

15




Then Lg(a) , where g 1is defined by (39), is slsc on the set

= €ER - = .
(43) Gg {a€R: Lg(a) ¢ 0} Cfl + sz

Proof. By (39), the closedness of fl . fz and the compactness of

C Cc we have

1 "2

(&) g = (£,7 £,)(x) = min{fl(xl) + fz(xz) : xte c, » %€ ¢

x1+x2=x].

2’

Let a€ Gg . If & is the global minimum value of g on C,+¢Cy

then Lg(a) is slsc at QO . Suppose & 1s not the global minimum

value. If g(X) = o, there exist XeE Cl and x €C2 such that

(45) X+x=% and fl(;}‘) + f2(£) =g(x) =a.

Since L_(a) and L_ (&) are slsc on G_. and G respectively, it
£ £ £ £,

follows from Theorem 1 that there exist real numbers B(;') >0, B{&) >0

and sequences ) CC1 , x4 CcC, , satisfying g X xI +x for

all 1 , such that

we) o €L, (fl&) - - ?zl) 1=1,2,... and (¥} »%
1

and

w7 x'e L (fz(i) - s ixt - ?cl) i=1,2,... and {x'} > x .
2

16
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is slsc on G

By (45), (46) and (47), we get

“8)  £GN + £,xN) <8® - BEOW - X1 - BEIE - &1 1= 1,2,

n ~j -
and (¥ + 3y %,

Let B(x) = min {B(;), B(X)} . 1t follows from (48) that

W) £ GM 4G < g® - BE

(50) g(x) - B(x)

A

and (xF + &1} ~ %

i

By taking yi =% + ﬁi for every

51) yie%@-s&nf-;q

By Theorem 1, Lg(a) is slsc at @ .

Theorem 6. Let f be a real funct

n N ~l A
nxi - x} + ||xl - xn\ i=1,2,...

;

1+ &Y - xg i=1,2,...

i , we have yi ¥+ X for all i,
and {yi} +Xx .

i=1,2,...

Thus Lg(a) is slsc on Gg . a

ion on C CR™ and suppose that Lf(u)

Also let h be defined bty (40). Then for every

£
A >0, Lh(a) is slsc on the set G

(52) G =

{xd €ER :

h given by

if A >0

a> 0} if A =0.

17
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Proof. The result is obvious when A = 0 . Suppose )\ > 0. Let a€ Gh .

If a 1is the global minimum value of h on AC , then L (@) is slsc

at @ . Suppose a 1is not the global minimum value and h(x) = Af(X/A) = a .

Then f(x/)) = a/A . Since a 1is not the global minimum value of h on
AC , hence a/) is not the global minimum value of f on C . Since

L, 1is slsc on G by Theorem 1 there exist a positive real number B(x)

f f°
and a sequence {x'} C¢ satisfying x' # x/A,

) €L LGN - @I - GV 1= 1,2,... and {x'} 7R/

Let yi = Ax’ for all i . Then yi + x for all i . It follows from

(40) and (53) that

(54) y'ELIE- 8@ -] 1=1,2,... ad G}k
By Theorem 1, Lh(a) is slsc at _& . Consequently, Lh(a) is slsc on G
Q.E.D.
As a result from the last two theorems we conclude that the family
of closed functions, defined on compact sets and having the property that

every stationary point is a global minimum, 18 closed under infimal con-

volution and nonnegative right scalar multiplication.

Acknowledgement. The authors are thankful to an anonymous referee of an

earlier version of this paper for his valuable comments.
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